martes, 27 de septiembre de 2011

FACTORIZACION

En álgebra, la factorización es expresar un objeto o número (por ejemplo, un número compuesto, una matriz o un polinomio) como producto de otros objetos más pequeños (factores), (en el caso de números debemos utilizar los números primos) que, al multiplicarlos todos, resulta el objeto original. Por ejemplo, el número 15 se factoriza en números primos 3 × 5; y a²-b² se factoriza como binomio conjugados (a - b)(a + b).
La factorización de enteros en números primos se describe en el teorema fundamental de la aritmética y la factorización de polinomios (en ciertos contextos) en el teorema fundamental del álgebra.

Factorizar un polinomio

Antes que todo, hay que decir que todo polinomio se puede factorizar utilizando números reales, si se consideran los números complejos . Existen métodos de factorización, para algunos casos especiales.
  • Binomios
  1. Diferencia de cuadrados
  2. Suma o diferencia de cubos
  3. Suma o diferencia de potencias impares iguales
  • Trinomios
  1. Trinomio cuadrado perfecto
  2. Trinomio de la forma x²+bx+c
  3. Trinomio de la forma ax²+bx+c
  • Polinomios
  1. Factor común

Caso I - Factor común

Sacar el factor común es añadir la literal común de un polinomio, binomio o trinomio, con el menor exponente y el divisor común de sus coeficientes, y para sacar esto, hay una regla muy sencilla que dice: Cuadrado del primer término más o menos cuadrado del segundo por el primero más cuadrado del segundo, y no hay que olvidar, que los dos que son positivos iguales funcionan como el primer término, sabiendo esto, será sumamente sencillo resolver los factores comunes.

Factor común monomio

Factor común por agrupación de términos
ab + ac + ad  =  a ( b + c + d) \,
ax + bx + ay + by  = a (x+y) + b (x+y) = (x+y)(a + b ) \, y si solo si el polinomio es 0 y el tetranomio nos da x.

Factor común polinomio

Primero hay que determinar el factor común de los coeficientes junto con el de las variables (la que tenga menor exponente). Se toma en cuenta aquí que el factor común no solo cuenta con un término, sino con dos.

Caso II - Factor común por agrupación de términos

Para trabajar un polinomio por agrupación de términos, se debe tener en cuenta que son dos características las que se repiten. Se identifica porque es un número par de términos.
Un ejemplo numérico puede ser:
2y + 2j +3xy + 3xj\,
entonces puedes agruparlos de la siguiente manera:
= (2y+2j)+(3xy+3xj)\,
Aplicamos el caso I (Factor común)
= 2(y+j)+3x(y+j)\,
= (2+3x)(y+j)\,

Caso III - Trinomio Cuadrado Perfecto

Se identifica por tener tres términos, de los cuales dos tienen raíces cuadradas exactas, y el restante equivale al doble producto de las raíces del primero por el segundo. Para solucionar un Trinomio Cuadrado Perfecto debemos reordenar los términos dejando de primero y de tercero los términos que tengan raíz cuadrada, luego extraemos la raíz cuadrada del primer y tercer término y los escribimos en un paréntesis, separándolos por el signo que acompaña al segundo término, al cerrar el paréntesis elevamos todo el binomio al cuadrado.
(a+b)^2 = a^2+2ab+b^2\,
(a-b)^2 = a^2-2ab+b^2\,

Caso IV - Diferencia de cuadrados

Se identifica por tener dos términos elevados al cuadrado y unidos por el signo menos. Se resuelve por medio de dos paréntesis, (parecido a los productos de la forma (a-b)(a+b), uno negativo y otro positivo.
(ay)^2-(bx)^2=
(ay-bx)(ay+bx)\,
O en una forma más general para exponentes pares:

(ay)^{2n}-(bx)^{2m}=
((ay)^n-(bx)^m)((ay)^n+(bx)^m)\,
Y utilizando una productoria podemos definir una factorización para cualquier exponente, el resultado nos da r+1 factores.

(ay)^n-(bx)^m=
((ay)^{n/{2^r}}-(bx)^{m/{2^r}})\cdot \prod_{i=1}^{r} ((ay)^{n/{2^i}}+(bx)^{m/{2^i}})  
\,

Caso V - Trinomio cuadrado perfecto por adición y sustracción

Se identifica por tener tres términos, dos de ellos son cuadrados perfectos, pero el restante hay que completarlo mediante la suma para que sea el doble producto de sus raíces , el valor que se suma es el mismo que se resta para que el ejercicio original no cambie.
x^2+xy+y^2=x^2+xy+y^2+(xy-xy)=x^2+2xy+y^2-xy=(x+y)^2-xy\,
Nótese que los paréntesis en "(xy-xy)" están a modo de aclaración visual.

Caso VI - Trinomio de la forma x2 + bx + c

Se identifica por tener tres términos, hay una literal con exponente al cuadrado y uno de ellos es el término independiente. Se resuelve por medio de dos paréntesis, en los cuales se colocan la raíz cuadrada de la variable, buscando dos números que multiplicados den como resultado el término independiente y sumados (pudiendo ser números negativos) den como resultado el término del medio

Caso VII - Suma o diferencia de potencias a la n

La suma de dos números a la potencia n, an +bn se descompone en dos factores (siempre que n sea un número impar):
Quedando de la siguiente manera:
 x^n + y^n = (x+y)(x^{n-1}-x^{n-2}y+x^{n-3}y^2-... + xy^{n-2}-y^{n-1}) \,
Ejemplo:
 x^3+1 = (x+1)(x^2-x+1) \,
La diferencia también es factorizable y en este caso no importa si n es par o impar. Quedando de la siguiente manera:
 x^n-y^n = (x-y)(x^{n-1}+x^{n-2}y+x^{n-3}y^2 +... +xy^{n-2}+y^{n-1}) \,

calculadora cientifica

Una calculadora es un dispositivo que se utiliza para realizar cálculos aritméticos. Aunque las calculadoras modernas incorporan a menudo un ordenador de propósito general, se diseñan para realizar ciertas operaciones más que para ser flexibles. Por ejemplo, existen calculadoras gráficas especializadas en campos matemáticos gráficos como la trigonometría y la estadística. También suelen ser más portátiles que la mayoría de los computadores, si bien algunas PDAs tienen tamaños similares a los modelos típicos de calculadora.
En el pasado, se utilizaban como apoyo al trabajo numérico ábacos, comptómetros, ábacos neperianos, tablas matemáticas, reglas de cálculo y máquinas de sumar. El término «calculador» se usaba para aludir a la persona que ejercía este trabajo, ayudándose también de papel y lápiz. Este proceso de cálculo semimanual era tedioso y proclive a errores. Actualmente, las calculadoras son electrónicas y son fabricadas por numerosas empresas en tamaños y formas variados. Se pueden encontrar desde modelos muy baratos del tamaño de una tarjeta de crédito hasta otros más costosos con una impresora incorporada.
Una de las primeras calculadoras mecánicas es el mecanismo de Anticitera.
Calculadoras científicas
Los modelos más complejos, habitualmente llamados «científicos», permiten calcular funciones trigonométricas, estadísticas y de otros tipos. Las más avanzadas pueden mostrar gráficos e incorporan características de los sistemas algebraicos computacionales, siendo también programables para aplicaciones tales como resolver ecuaciones algebraicas, modelos financieros e incluso juegos. La mayoría de estas calculadoras puede mostrar números de hasta diez dígitos enteros o decimales completos en la pantalla. Se usa la notación científica para mostrar números por hasta un límite dispuesto por el diseñador del modelo, como 9,999999999 × 1099. Si se introduce un número mayor o una expresión matemática que lo arroje (como un factorial), entonces la calculadora puede limitarse a mostrar un «error». Porque solo puede mostrar 99 dígitos, o sea, una cifra de 10.000 hexadecallones.
  • Hexadecallón es igual a un millón elevado a 16.
Este mensaje de «error» también puede mostrarse si una función u operación no está matemáticamente definida, como es el caso de la división por cero o las raíces enésimas pares de números negativos (la mayoría de las calculadoras científicas no permiten números complejos, si bien algunas cuentan con una función especial para trabajar con ellos). Algunas calculadoras pueden distinguir entre ambos tipos de error, lo que no siempre resulta evidente para el usuario.
Sólo unas pocas compañías desarrollan y construyen nuevos modelos profesionales de ingeniería y finanzas; las más conocidas son Casio, Sharp, Hewlett-Packard (HP) y Texas Instruments (TI). Tales calculadoras son buenos ejemplos de sistemas embebidos.

desventajas del calculo diferencial

Gottfried Wilhelm Leibniz

fue un filósofo, matemático, jurista, bibliotecario y político alemán.
Fue uno de los grandes pensadores de los siglos XVII y XVIII, y se le reconoce como "El último genio universal". Realizó profundas e importantes contribuciones en las áreas de metafísica, epistemología, lógica, filosofía de la religión, así como a la matemática, física, geología, jurisprudencia e historia. Incluso Denis Diderot, el filósofo deísta francés del siglo XVIII, cuyas opiniones no podrían estar en mayor oposición a las de Leibniz, no podía evitar sentirse sobrecogido ante sus logros, y escribió en la Enciclopedia: "Quizás nunca haya un hombre leído tanto, estudiado tanto, meditado más y escrito más que Leibniz... Lo que ha elaborado sobre el mundo, sobre Dios, la naturaleza y el alma es de la más sublime elocuencia. Si sus ideas hubiesen sido expresadas con el olfato de Platón, el filósofo de Leipzig no cedería en nada al filósofo de Atenas."[2] De hecho, el tono de Diderot es casi de desesperanza en otra observación, que contiene igualmente mucho de verdad: "Cuando uno compara sus talentos con los de Leibniz, uno tiene la tentación de tirar todos sus libros e ir a morir silenciosamente en la oscuridad de algún rincón olvidado." La reverencia de Diderot contrasta con los ataques que otro importante filósofo, Voltaire, lanzaría contra el pensamiento filosófico de Leibniz; a pesar de reconocer la vastedad de la obra de éste, Voltaire sostenía que en toda ella no había nada útil que fuera original, ni nada original que no fuera absurdo y risible.
Ocupa un lugar igualmente importante tanto en la historia de la filosofía como en la de las matemáticas. Inventó el cálculo infinitesimal, independientemente de Newton, y su notación es la que se emplea desde entonces. También inventó el sistema binario, fundamento de virtualmente todas las arquitecturas de las computadoras actuales. Fue uno de los primeros intelectuales europeos que reconocieron el valor y la importancia del pensamiento chino y de la China como potencia desde todos los puntos de vista.
Junto con René Descartes y Baruch Spinoza, es uno de los tres grandes racionalistas del siglo XVII. Su filosofía se enlaza también con la tradición escolástica y anticipa la lógica moderna y la filosofía analítica. Leibniz hizo asimismo contribuciones a la tecnología y anticipó nociones que aparecieron mucho más tarde en biología, medicina, geología, teoría de la probabilidad, psicología, ingeniería y ciencias de la información. Sus contribuciones a esta vasta lista de temas está desperdigada en diarios y en decenas de miles de cartas y manuscritos no publicados. Hasta el momento, no se ha realizado una edición completa de sus escritos, y por ello no es posible aún hacer un recuento integral de sus logros.

isaac newton

Sir Isaac Newton (25 de diciembre de 1642 JU20 de marzo de 1727 JU; 4 de enero de 1643 GR31 de marzo de 1727 GR) fue un físico, filósofo, teólogo, inventor, alquimista y matemático inglés, autor de los Philosophiae naturalis principia mathematica, más conocidos como los Principia, donde describió la ley de gravitación universal y estableció las bases de la mecánica clásica mediante las leyes que llevan su nombre. Entre sus otros descubrimientos científicos destacan los trabajos sobre la naturaleza de la luz y la óptica (que se presentan principalmente en su obra Opticks) y el desarrollo del cálculo matemático.
Newton comparte con Leibniz el crédito por el desarrollo del cálculo integral y diferencial, que utilizó para formular sus leyes de la física. También contribuyó en otras áreas de la matemática, desarrollando el teorema del binomio y las fórmulas de Newton-Cotes.
Entre sus hallazgos científicos se encuentran el descubrimiento de que el espectro de color que se observa cuando la luz blanca pasa por un prisma es inherente a esa luz, en lugar de provenir del prisma (como había sido postulado por Roger Bacon en el siglo XIII); su argumentación sobre la posibilidad de que la luz estuviera compuesta por partículas; su desarrollo de una ley de convección térmica, que describe la tasa de enfriamiento de los objetos expuestos al aire; sus estudios sobre la velocidad del sonido en el aire; y su propuesta de una teoría sobre el origen de las estrellas. Fue también un pionero de la mecánica de fluidos, estableciendo una ley sobre la viscosidad.
Newton fue el primero en demostrar que las leyes naturales que gobiernan el movimiento en la Tierra y las que gobiernan el movimiento de los cuerpos celestes son las mismas. Es, a menudo, calificado como el científico más grande de todos los tiempos, y su obra como la culminación de la revolución científica. El matemático y físico matemático Joseph Louis Lagrange (1736–1813), dijo que "Newton fue el más grande genio que ha existido y también el más afortunado dado que sólo se puede encontrar una vez un sistema que rija el mundo."

definicion de calculo diferencial

El Cálculo Diferencial, es una parte importante del análisis matemático y dentro del mismo del cálculo infinitesimal. Consiste en el estudio del cambio de las variables dependientes cuando cambian las variables independientes de las funciones o campos objetos del análisis. El principal objeto de estudio en el cálculo diferencial es la derivada. Una noción estrechamente relacionada es la de Diferencial de una función.
En el estudio del cambio de una función cuando cambian sus variables independientes es de especial interés para el cálculo diferencial el caso en el que el cambio de las variables es infinitesimal, esto es, cuando dicho cambio tiende a cero (se hace tan pequeño como se desee). Y es que el cálculo diferencial se apoya constantemente en el concepto básico del límite. El paso al límite es la principal herramienta que permite desarrollar la teoría del cálculo diferencial y la que lo diferencia claramente del álgebra.
Desde el punto de vista matemático de las funciones y la geometría, la derivada de una función en un cierto punto es una medida de la tasa en la cual una función cambia conforme un argumento se modifica. Esto es, una derivada involucra, en términos matemáticos, una tasa de cambio. Una derivada es el cálculo de las pendientes instantáneas de f(x) en cada punto x. Esto se corresponde a las pendientes de las tangentes de la gráfica de dicha función en sus puntos (una tangente por punto); Las derivadas pueden ser utilizadas para conocer la concavidad de una función, sus intervalos de crecimiento, sus máximos y mínimos.